Model kinds
At the moment, we support the following kinds:
model: represents a generic ML modelmlflow: represents a MLflow modelsklearn: represents a scikit-learn modelhuggingface: represents a HuggingFace model
For each different kind, the Model object has its own subclass with different spec and status attributes.
Model
The model kind indicates that the model is a generic ML model. It's usefull to represent a generic ML model as a Model object.
Model spec parameters
| Parameter | Type | Description | Default |
|---|---|---|---|
path |
str | Path of the model, can be a local path or a remote path, a single filepath or a directory/partition. | required |
framework |
str | Model framework (e.g. 'pytorch'). | None |
algorithm |
str | Model algorithm (e.g. 'resnet'). | None |
base_model |
str | Base model. | None |
parameters |
dict | Model parameters. | None |
metrics |
dict | Model metrics. | None |
Model methods
The model kind has no additional methods.
Mlflow
The mlflow kind indicates that the model is an MLflow model. It's usefull to represent an MLflow model as a Model object.
Mlflow spec parameters
| Parameter | Type | Description | Default |
|---|---|---|---|
path |
str | Path of the model, can be a local path or a remote path, a single filepath or a directory/partition. | required |
framework |
str | Model framework (e.g. 'pytorch'). | None |
algorithm |
str | Model algorithm (e.g. 'resnet'). | None |
base_model |
str | Base model. | None |
parameters |
dict | Model parameters. | None |
metrics |
dict | Model metrics. | None |
flavor |
str | Mlflow model flavor. | None |
model_config |
dict | Mlflow model config. | None |
input_datasets |
list[Dataset] | Mlflow input datasets (see below). | None |
signature |
Signature | Mlflow model signature (see below). | None |
Dataset
| Parameter | Type | Description | Default |
|---|---|---|---|
name |
str | Dataset name. | None |
digest |
str | Dataset digest. | None |
profile |
str | Dataset profile. | None |
schema |
str | Dataset schema. | None |
source |
str | Dataset source. | None |
source_type |
str | Dataset source type. | None |
Signature
| Parameter | Type | Description | Default |
|---|---|---|---|
inputs |
str | Signature inputs. | None |
outputs |
str | Signature outputs. | None |
parameters |
str | Signature parameters. | None |
Mlflow methods
The mlflow kind has no additional methods.
Sklearn
The sklearn kind indicates that the model is an Sklearn model. It's usefull to represent an Sklearn model as a Model object.
Sklearn spec parameters
| Parameter | Type | Description | Default |
|---|---|---|---|
path |
str | Path of the model, can be a local path or a remote path, a single filepath or a directory/partition. | required |
framework |
str | Model framework (e.g. 'pytorch'). | None |
algorithm |
str | Model algorithm (e.g. 'resnet'). | None |
base_model |
str | Base model. | None |
parameters |
dict | Model parameters. | None |
metrics |
dict | Model metrics. | None |
Sklearn methods
The sklearn kind has no additional methods.
Huggingface
The huggingface kind indicates that the model is an Huggingface model. It's usefull to represent an Huggingface model as a Model object.
Huggingface spec parameters
| Parameter | Type | Description | Default |
|---|---|---|---|
path |
str | Path of the model, can be a local path or a remote path, a single filepath or a directory/partition. | required |
framework |
str | Model framework (e.g. 'pytorch'). | None |
algorithm |
str | Model algorithm (e.g. 'resnet'). | None |
base_model |
str | Base model. | None |
parameters |
dict | Model parameters. | None |
metrics |
dict | Model metrics. | None |
model_id |
str | Huggingface model id. If not specified, the model is loaded from the model path | None |
model_revision |
str | Huggingface model revision. | None |
Huggingface methods
The huggingface kind has no additional methods.