Training the model
Let us define the training function.
%%writefile "src/train-model.py"
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from digitalhub_runtime_python import handler
from sklearn.svm import SVC
from pickle import dump
import sklearn.metrics
import os
@handler(outputs=["model"])
def train(project, di):
df_cancer = di.as_df()
X = df_cancer.drop(['target'],axis=1)
y = df_cancer['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state=5)
svc_model = SVC()
svc_model.fit(X_train, y_train)
y_predict = svc_model.predict(X_test)
if not os.path.exists("model"):
os.makedirs("model")
with open("model/cancer_classifier.pkl", "wb") as f:
dump(svc_model, f, protocol=5)
metrics = {
"f1_score": sklearn.metrics.f1_score(y_test, y_predict),
"accuracy": sklearn.metrics.accuracy_score(y_test, y_predict),
"precision": sklearn.metrics.precision_score(y_test, y_predict),
"recall": sklearn.metrics.recall_score(y_test, y_predict),
}
return project.log_model(name="cancer_classifier",
kind="sklearn",
source="./model/",
metrics=metrics)
The function takes the analysis dataset as input, creates an SVC model with the scikit-learn framework and logs the model with its metrics.
Let us register it:
train_fn = project.new_function(name="train",
kind="python",
python_version="PYTHON3_10",
code_src="src/train-model.py",
handler="train",
requirements=["scikit-learn==1.2.2"])
and run it locally:
train_run = train_fn.run(action="job",
inputs={"di": gen_data_run.output("dataset").key},
local_execution=True)
As a result, a new model is registered in the Core and may be used by different inference operations:
model = train_run.output("model")
model.spec.path
Lastly, we'll deploy and test the model.