Skip to content

KFP Pipelines Runtime

The kfp runtime allows you to run workflows within the platform. The runtime introduces a function of kind kfp and a task of kind pipeline.

Prerequisites

Python version and libraries:

  • python >= 3.9
  • digitalhub-runtime-kfp

The package is available on PyPI:

python -m pip install digitalhub-runtime-kfp

HOW TO

With the kfp runtime you can use the function's run() method to execute a workflow you have defined. The kfp runtime execution workflow follows roughly these steps:

  1. Define one or more functions to be executed. These functions can be from other runtimes.
  2. Define somewhere a pipeline.
  3. The workflow's run() method calls a stepper that create various KFP ContainerOP and executes them.

Pipeline definition

To define a pipeline you need to define function with the def keyword. You can give the function a name and declare its arguments as usual. From digitalhub_runtime_kfp.dsl you must import pipeline_context. Its a context manager object that allows you to order the various steps of execution and chain them together with inputs and outputs. Once you write the pipeline function, store it in a file .py. When you define the steps inside the pipeline, you specify also inputs, outputs, parameters and values for the steps.

Step parameters

Parameter Type Example Description
name str "download" Name of the step
function str "downloader-funct" Name of the dh function to execute. It must exists in the dh project context
action str "job" Action to execute
inputs dict {"url": "dataitem_key", "dataset": previous_step.outputs["some_key"]} Input dh parameters keys (dataitems, artifacts, models). The syntax for the inputs is the same as in the kfp package when it comes to link an output step to an input.
outputs dict {"dataset": "dataset"} Dh outputs mapped
parameters dict {"param": "value"} Function generic parameters
values list ["val1", "val2"] List of non dh outputs referenced as strings

Workflow definition example

from digitalhub_runtime_kfp.dsl import pipeline_context

def myhandler(url):
   # Use pipeline_context() manager
   with pipeline_context() as pc:

      # Defaine first step
      step1 = pc.step(name="download",                         # Name of the step 1
                      function="downloader-funct",              # Name of the dh function to execute
                      action="job",                             # Action to execute
                      inputs={"url": url},                      # Input parameters
                      outputs={"dataset": "dataset"})           # Mapped outputs

      step2 = pc.step(name="extract_parking",                  # Name of the step 2
                      function="extract-parkings",              # Name of the dh function to execute
                      action="job",                             # Action to execute
                      inputs={"di": step1.outputs['dataset']},  # Input parameters from previous step
                      outputs={"parkings": "parkings"})         # Mapped outputs

Workflow

The kfp runtime introduces a function of kind kfp.

Workflow parameters

Name Type Description Default
project str Project name. Required only if creating from library, otherwise MUST NOT be set
name str Name that identifies the object required
kind str Workflow kind required
uuid str ID of the object in form of UUID4 None
description str Description of the object None
labels list[str] List of labels None
embedded bool Flag to determine if object must be embedded in project True
code_src str URI pointer to source code None
code str Source code (plain text) None
base64 str Source code (base64 encoded) None
handler str Function entrypoint None
lang str Source code language (hint) None
image str Image where the workflow will be executed None
tag str Tag of the image where the workflow will be executed None
Workflow kinds

The kind parameter must be one of the following:

  • kfp

Workflow example

# From project ...

workflow = project.new_workflow(name="workflow",
                                kind="kfp",
                                code_src="pipeline.py",
                                handler="handler")

# .. or from sdk

workflow = dh.new_workflow(project="my-project",
                           name="workflow",
                           kind="kfp",
                           code_src="pipeline.py",
                           handler="handler")

Task

The KFP runtime introduces a task of kind pipeline that allows you to run a workflow. A Task is created with the run() method, so it's not managed directly by the user. The parameters for the task creation are passed directly to the run() method, and may vary depending on the kind of task.

Task parameters

Name Type Description Default Kind specific
action str Task action required
node_selector list[dict] Node selector None
volumes list[dict] List of volumes None
resources dict Resources restrictions None
affinity dict Affinity None
tolerations list[dict] Tolerations None
envs list[dict] Env variables None
secrets list[str] List of secret names None
profile str Profile template None
schedule str Schedule for the job None
Task actions

Actions must be one of the following:

  • pipeline

Task example

run = function.run(action="pipeline")

Run

The Run object is, similar to the Task, created with the run() method. The run's parameters are passed alongside the task's ones.

Run parameters

Name Type Description Default
inputs dict Inputs for the pipeline function. None

Run example

run = function.run(
    action="job",
    inputs={"dataitem": dataitem.key}
)

Run methods

output

Get run's output by name.

Parameters:

Name Type Description Default
output_name str

Key of the result.

required
as_key bool

If True, return result as key.

False
as_dict bool

If True, return result as dictionary.

False

Returns:

Type Description
Entity | dict | str | None

Result.

outputs

Get run's outputs.

Parameters:

Name Type Description Default
as_key bool

If True, return results as keys.

False
as_dict bool

If True, return results as dictionaries.

False

Returns:

Type Description
dict

List of output objects.

result

Get result by name.

Parameters:

Name Type Description Default
result_name str

Name of the result.

required

Returns:

Type Description
Any

The result.

results

Get results.

Returns:

Type Description
dict

The results.

values

Get values.

Returns:

Type Description
dict

The values.